A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 11
Nov.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. Nosrati, J. Belikov, A. Tepljakov, and  E. Petlenkov,  “Revisiting the LQR problem of singular systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2236–2252, Nov. 2024. doi: 10.1109/JAS.2024.124665
Citation: K. Nosrati, J. Belikov, A. Tepljakov, and  E. Petlenkov,  “Revisiting the LQR problem of singular systems,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 11, pp. 2236–2252, Nov. 2024. doi: 10.1109/JAS.2024.124665

Revisiting the LQR Problem of Singular Systems

doi: 10.1109/JAS.2024.124665
Funds:  This work was supported by the European Union’s Horizon Europe research and innovation programme (101120657), project ENFIELD (European Lighthouse to Manifest Trustworthy and Green AI), the Estonian Research Council (PRG658, PRG1463), and the Estonian Centre of Excellence in Energy Efficiency, ENER (TK230) funded by the Estonian Ministry of Education and Research
More Information
  • In the development of linear quadratic regulator (LQR) algorithms, the Riccati equation approach offers two important characteristics—it is recursive and readily meets the existence condition. However, these attributes are applicable only to transformed singular systems, and the efficiency of the regulator may be undermined if constraints are violated in nonsingular versions. To address this gap, we introduce a direct approach to the LQR problem for linear singular systems, avoiding the need for any transformations and eliminating the need for regularity assumptions. To achieve this goal, we begin by formulating a quadratic cost function to derive the LQR algorithm through a penalized and weighted regression framework and then connect it to a constrained minimization problem using the Bellman’s criterion. Then, we employ a dynamic programming strategy in a backward approach within a finite horizon to develop an LQR algorithm for the original system. To accomplish this, we address the stability and convergence analysis under the reachability and observability assumptions of a hypothetical system constructed by the pencil of augmented matrices and connected using the Hamiltonian diagonalization technique.

     

  • loading
  • 1 Under indiscernible topological changes in network dynamics, nonregular systems for node dynamics can be common [34]. Additionally, coupling regular singular systems does not necessarily ensure the regularity of the overall system [35].
    2 Unexpected faults such as power line outages in power grids can cause sudden changes in system layout, leading to different algebraic conditions and constraints [37]. Consequently, the equivalent systems associated with constraints are no longer synchronized with each other.
    3 We consider this assumption for stability and convergence analysis. Since regularity is a sufficient condition for the uniqueness of solutions in singular systems, the LQR algorithm derived in this study can also be applied to systems that may not meet regularity requirements.
    4 Any real symmetric PSD matrix can be diagonalized using an orthogonal matrix. Then, with no loss of generality, let the real symmetric $ Q \succeq 0 $ be diagonal, i.e., it can be written as $ Q=(Q^{\frac{1}{2}})^\mathsf{T}Q^{\frac{1}{2}} $, where $ Q^{\frac{1}{2}} \succeq 0 $ is a unique square root of Q.
    5 Note: $ \{T^{-1}\succ0 $, $ (T+AS^{-1}A^\mathsf{T})\succ0\} $ $ \Rightarrow $ $ \mathbb{P}_s\succ0 $.
    6 Note: $ \{\Psi\succ0 $, $ E^\mathsf{T}\Phi^{-1}E\succeq0\} $ $ \Rightarrow $ $ \mathbb{Q}_s\succ0 $.
  • [1]
    S. L. Campbell, Singular Systems of Differential Equations. London, U.K.: Pitman, 1980.
    [2]
    N. R. Chowdhury, J. Belikov, D. Baimel, and Y. Levron, “Observer-based detection and identification of sensor attacks in networked CPSs,” Automatica, vol. 121, p. 109166, 2020. doi: 10.1016/j.automatica.2020.109166
    [3]
    Z. Zhong, X. Wang, and H. K. Lam, “Finite-time fuzzy sliding mode control for nonlinear descriptor systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1141–1152, 2021. doi: 10.1109/JAS.2021.1004024
    [4]
    H. Bamberger, A. Wolf, and M. Shoham, “Assembly mode changing in parallel mechanisms,” IEEE Trans. Robot., vol. 24, no. 4, pp. 765–772, 2008. doi: 10.1109/TRO.2008.926863
    [5]
    P. Liu, Q. Zhang, X. Yang, and L. Yang, “Passivity and optimal control of descriptor biological complex systems,” IEEE Trans. Autom. Control, vol. 53, no. Special Issue, pp. 122–125, 2008. doi: 10.1109/TAC.2007.911341
    [6]
    Y. Han and S. Zhou, “Novel criteria of stochastic stability for discrete-time Markovian jump singular systems via supermartingale approach,” IEEE Trans. Autom. Control, vol. 67, no. 12, pp. 6940–6947, 2022. doi: 10.1109/TAC.2022.3200949
    [7]
    Z. Feng, J. Li, P. Shi, H. Du, and Z. Jiang, Analysis and Synthesis of Singular Systems. London, Academic Press, 2020.
    [8]
    L. Dai, Singular Control Systems. Berlin: Springer Verlag, 1989.
    [9]
    D. G. Luenberger, “Time-invariant descriptor systems,” Automatica, vol. 14, pp. 473–480, 1978. doi: 10.1016/0005-1098(78)90006-7
    [10]
    Z. Q. Ge, “Exact controllability and exact observability of descriptor infinite dimensional systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1956–1963, 2021. doi: 10.1109/JAS.2020.1003411
    [11]
    L. Pandolfi, “Controllability and stabilization for linear systems of algebraic and differential equations,” J. Optim. Theory Appl., vol. 30, pp. 601–620, 1980. doi: 10.1007/BF01686724
    [12]
    M. Darouach and M. Boutayeb, “Design of observers for descriptor systems,” IEEE Trans. Autom. Control, vol. 40, pp. 1323–1327, 1995. doi: 10.1109/9.400467
    [13]
    X. Lu, L. Wang, H. Wang, and X. Wang, “Kalman filtering for delayed singular systems with multiplicative noise,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 51–58, 2016. doi: 10.1109/JAS.2016.7373762
    [14]
    J. Y. Ishihara, M. H. Terra, and J. P. Cerri, “Optimal robust filtering for systems subject to uncertainties,” Automatica, vol. 52, pp. 111–117, 2015. doi: 10.1016/j.automatica.2014.10.120
    [15]
    Z. Shi and Z. Wang, “Optimal control for a class of complex singular system based on adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 188–197, 2019. doi: 10.1109/JAS.2019.1911342
    [16]
    S. Marir and M. Chadli, “Robust admissibility and stabilization of uncertain singular fractional-order linear time-invariant systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 685–692, 2019. doi: 10.1109/JAS.2019.1911480
    [17]
    K. Nosrati, J. Belikov, A. Tepljakov, and E. Petlenkov, “Extended fractional singular Kalman filter,” Appl. Math. Comput., vol. 48, p. 127950, 2023.
    [18]
    Y. Y. Wang, R. M. Frank, and D. J. Clements, “The robustness properties of the linear quadratic regulators for singular systems,” IEEE Trans. Autom. Control, vol. 38, no. 1, pp. 96–100, 1993. doi: 10.1109/9.186315
    [19]
    I. Qais and D. Pal, “The continuous-time singular LQR problem and the riddle of nonautonomous Hamiltonian systems: A behavioral solution,” IEEE Trans. Autom. Control, vol. 67, no. 9, pp. 4770–4777, 2022. doi: 10.1109/TAC.2022.3161373
    [20]
    T. Reis and M. Voigt, “Linear-quadratic optimal control of differential-algebraic systems: The infinite time horizon problem with zero terminal state,” SIAM J. Control. Optim., vol. 57, no. 3, pp. 1567–1596, 2019. doi: 10.1137/18M1189609
    [21]
    G. Duan, Analysis and Design of Descriptor Linear Systems. New York, NY, USA: Springer, 2010.
    [22]
    B. Gashi and H. Hua, “Optimal regulators for a class of nonlinear stochastic systems,” Int. J. Control, vol. 96, no. 1, pp. 136–146, 2023. doi: 10.1080/00207179.2021.1982014
    [23]
    H. Hua, B. Gashi, and H. Hua, “Robust risk-sensitive control,” Int. J. Robust Nonlinear Control, vol. 33, no. 10, pp. 5484–5509, 2023. doi: 10.1002/rnc.6655
    [24]
    D. J. Bender and A. J. Laub, “The linear-quadratic optimal regulator for descriptor systems: Discrete-time case,” Automatica, vol. 23, no. 1, pp. 71–85, 1987. doi: 10.1016/0005-1098(87)90119-1
    [25]
    D. J. Bender and A. J. Laub, “The linear quadratic optimal regulator for descriptor systems,” IEEE Trans. Autom. Control, vol. 32, no. 8, pp. 672–688, 1987. doi: 10.1109/TAC.1987.1104694
    [26]
    I. Qais, C. Bhawal, and D. Pal, “Optimal singular LQR problem: A PD feedback solution,” SIAM J. Control Optim., vol. 61, no. 4, pp. 2655–2681, 2023. doi: 10.1137/22M1496414
    [27]
    H. Xu and K. Mizukami, “The linear-quadratic optimal regulator for continuous-time descriptor systems: A dynamic programming approach,” Int. J. Syst. Sci., vol. 25, no. 11, pp. 1889–1998, 1994. doi: 10.1080/00207729408949319
    [28]
    V. Mehrmann, “Existence, uniqueness, and stability of solutions to singular linear quadratic optimal control problems,” Linear Algebra Appl., vol. 121, pp. 291–331, 1989. doi: 10.1016/0024-3795(89)90707-6
    [29]
    J. Heiland and E. Zuazua, “Classical system theory revisited for turnpike in standard state space systems and impulse controllable descriptor systems,” SIAM J. Control Optim., vol. 59, no. 5, pp. 3600–3624, 2021. doi: 10.1137/20M1356105
    [30]
    M. Muhafzan, “Use of semidefinite programming for solving the LQR problem subject to rectangular descriptor systems,” Int. J. Appl. Math. Comput. Sci., vol. 20, no. 4, pp. 655–664, 2010. doi: 10.2478/v10006-010-0048-9
    [31]
    T. Chiranjeevi and R. K. Biswas, “Linear quadratic optimal control problem of fractional order continuous-time singular system,” Procedia Comput. Sci., vol. 171, pp. 1261–1268, 2020. doi: 10.1016/j.procs.2020.04.134
    [32]
    A. Ilchmann, L. Leben, J. Witschel, and K. Worthmann, “Optimal control of differential-algebraic equations from an ordinary differential equation perspective,” Opt. Control Appl. Methods, vol. 40, no. 2, pp. 351–366, 2019. doi: 10.1002/oca.2481
    [33]
    M. H. Kazma and A. F. Taha, “ODE transformations of nonlinear DAE power systems,” arXiv preprint arXiv: 2306.17658, 2023.
    [34]
    D. Patil, P. Tesi, and S. Trenn, “Indiscernible topological variations in DAE networks,” Automatica, vol. 101, pp. 280–289, 2019. doi: 10.1016/j.automatica.2018.12.012
    [35]
    S. A. Nugroho, A. F. Taha, N. Gatsis, and J. Zhao, “Observers for differential algebraic equation models of power nNetworks: Jointly estimating dynamic and algebraic states,” IEEE Trans. Control Netw. Syst., vol. 9, no. 3, pp. 1531–1543, 2022. doi: 10.1109/TCNS.2022.3158754
    [36]
    S. Chen, H. D. Nguyen, and C. Wen, “Small-signal stability of microgrids in DAE form under DoS Attacks with contraction analysis,” in Proc. IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., Feb. 2024, pp. 1–5.
    [37]
    T. GroB, S. Trenn, and A. Wirsen, “Solvability and stability of a power system DAE model,” Syst. Control Lett., vol. 97, pp. 12–17, 2016. doi: 10.1016/j.sysconle.2016.08.003
    [38]
    H. D. Nguyen, T. L. Vu, J. J. Slotine, and K. Turitsyn, “Contraction analysis of nonlinear DAE systems,” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 429–436, 2021. doi: 10.1109/TAC.2020.2981348
    [39]
    K. Nosrati, J. Belikov, A. Tepljakov, and E. Petlenkov, “Optimal robust filter of uncertain fractional order systems: A penalized deterministic approach,” IEEE Control Syst. Lett., vol. 7, pp. 1075–1080, 2022.
    [40]
    A. Ilchmann, J. Witschel, and K. Worthmann, “Model predictive control for singular differential-algebraic equations,” Int. J. Control, vol. 95, no. 8, pp. 2141–2150, 2022. doi: 10.1080/00207179.2021.1900604
    [41]
    R. Nikoukhah, A. L. Willsky, and B. C. Levy, “Boundary-value descriptor systems: Well-posedness, reachability and observability,” Int. J. Control, vol. 46, pp. 1715–1737, 1987. doi: 10.1080/00207178708934005
    [42]
    R. Nikoukhah, A. L. Willsky, and B. C. Levy, “Kalman filtering and Riccati equations for decriptor systems,” IEEE Trans. Autom. Control, vol. 37, no. 9, pp. 1325–1342, 1992. doi: 10.1109/9.159570
    [43]
    D. G. Luenberger, Linear and Nonlinear Programming. Boston: Kluwer Academic Publishers, 2003.
    [44]
    M. H. Terra, J. P. Cerri, and J. Y. Ishihara, “Optimal robust linear quadratic regulator for systems subject to uncertainties,” IEEE Trans. Autom. Control, vol. 59, no. 9, pp. 2586–2591, 2014. doi: 10.1109/TAC.2014.2309282
    [45]
    R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming. Princeton, NJ, USA: Princeton university Press, 2015.
    [46]
    K. Nosrati, J. Belikov, A. Tepljakov, and E. Petlenkov, “Penalized least-squares method for LQR problem of singular systems,” in Proc. IEEE Conf. Decision Control, pp. 1251–1256, 2023.
    [47]
    Y. Mehmood, G. Mustafa, A. Q. Khan, M. Abid, and M. Darouach, “Approximate discretization of regular descriptor (singular) systems with impulsive mode,” Automatica, vol. 73, pp. 231–236, 2016. doi: 10.1016/j.automatica.2016.07.017
    [48]
    P. V. Dooren, “The computation of Kronecker’s canonical form of a singular pencil,” Linear Algebra Appl., vol. 27, pp. 103–140, 1979. doi: 10.1016/0024-3795(79)90035-1
    [49]
    B. D. O. Anderson and J. B. Moore, Optimal Filtering. Chelmsford, MA, USA: Courier Corporation, 2012.
    [50]
    T. Pappas, A. Laub, and N. Sandell, “On the numerical solution of the discrete-time algebraic Riccati equation,” IEEE Trans. Autom. Control, vol. 25, no. 4, pp. 631–641, 1980. doi: 10.1109/TAC.1980.1102434
    [51]
    R. Bronson, Matrix Methods: An Introduction. Houston: Gulf Professional Publishing, 1991.
    [52]
    T. Bessaoudi, F. B. Hmida, and C. S. Hsieh, “Robust state and fault estimation for linear descriptor stochastic systems with disturbances: A DC motor application,” IET Control Theory Appl., vol. 11, no. 5, pp. 601–610, 2017. doi: 10.1049/iet-cta.2016.1235
    [53]
    A. Rachid, “A remark on the discretization of singular systems,” Automatica, vol. 31, no. 2, pp. 347–348, 1995. doi: 10.1016/0005-1098(94)00142-6
    [54]
    T. B. Gross, S. Trenn, and A. Wirsen, “Topological solvability and index characterizations for a common DAE power system model,” in Proc. IEEE Conf. Control Appl., Dec. 2014, pp. 9–14.

Catalog

    通讯作者: 陈斌, [email protected]
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (206) PDF downloads(56) Cited by()

    Highlights

    • Examine the conditions for the existence of the LQR algorithm for discrete singular systems
    • Derive LQR algorithm via dynamic programming and penalized LSs over a finite horizon
    • Link the problem to a system using Hamiltonian diagonalization for steady-state analysis
    • Provide sufficient conditions for a unique PD solution to the Riccati equation
    • Ensure the stability of the derived algorithm by contradiction and under the given assumptions

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return